After traveling from coast to coast, filming engagement videos of the science content that I teach everyday and learning firsthand aboard the R/V Melville, it's now time to put it all together in the classroom as the adventures continue!
Sunday, June 8, 2014
Saturday, June 7, 2014
Friday, June 6, 2014
Tuesday, June 3, 2014
Festive ending
As we continue into the Straight of De Fuca, halfway between the U.S. and Canada, the final batch of sampling is being taken for analysis. I'm looking at the mountains in the Olympic National Forest as the familiar music plays as on the fantail, mostly infamous songs from the movie, "National Lapoon's Christmas Vacation." We have a few more locations of interest as we pull into the port at the University of Washington campus on Friday. It's now time to begin the equally difficult work of packing all that has been brought on board which will take all of the next 2-3 days. The sun is out and the mood is that of elation. Science at sea is not easy work. From preparation and planning to tackling problems with equipment and limited resources at sea, these marine scientists have persevered through it all.
The research has been successful, and the learning has been overwhelming, as everyone is eager to teach and learn. These are lifelong learners unlike any I have ever witnessed firsthand. Science is knowledge, an understanding of mysteries one test at a time. As Dr. Wells said to me, "If we knew everything that we were doing, it wouldn't be called research."
After this research cruise, we are one step closer to understanding the vast unknown of the ocean and the future of life as we know it.
I am currently working on videos to add to this blog once I get home to sufficient bandwidth. I will be interviewing each principal investigator and report as I have on the other parts of this journey. The day by day work with many more pictures and information can be found on my friend and collegue, Denis Costello's blog, socalcostello.blogspot.com. Feel free to comment if there is more that you'd like to see or know about life and science at sea.
Sunday, June 1, 2014
UW joins the science party
After several strenuous days of sampling and working in the lab, we are now in the home stretch with quite a few sites of interest in our path. In coordination with NOAA-PMEL, Rachel Van Giessen represents the University of Washington on this cruise. Her team of three is playing an important role in both the grand design of our research onboard and the collaboration between NOAA and UW. They are analyzing both dissolved oxygen (DO) and collecting samples for the labs back at the university to analyze for dissolved inorganic carbon (DIC). Rachel's team has been supporting in every way on board by deploying the CTD with me each day and helping wherever is needed. Now that we are off the coast of Washington, there are specific sites that NOAA is particularly interested in that are now our target sites. These sites have been chosen because of their value for comparing data in the same location over time. We have monitored the water chemistry for many years from these exact spots and are able to see the changes, year to year. Entering the Strait of Juan De Fuca, we will be increasing our workload to collect data all along the way.
Their work:
Rachel Vander Giessen, UW, titrating to find DO in a sample |
Hannah and Kit work together to collect the water sample and poison the sample to stop the biological processes. |
Titration mobile station. Notice the cloudy precipitate in the glass vial. |
Rachel works on the deck with the chemicals used for DO calculations. |
Meet the team:Rachel Vander Giessen, 33, has had a passion for the ocean as long as she's lived in Seattle. All of her life. After graduating from high school, her passion propelled her to apply for the Maritime Marine Academy in Seattle, like so many of the full-time crew on board the Melville, but a subpar math score on the entrance exam kept her from pursuing this dream. Ironically, her degree now is in physics. "All it took was a good professor," she explained, to change her mind and turn her on to the mathematical world around us. After a few years of crewing private vessels through the inside passage to Alaska, she finished her degree and began volunteering at UW. It was on another research cruise as a volunteer with Jan Newton (UW) to repair the Cha Ba buoy (one of our sites of interest) that she was offered a permanent job with the university that has led to her work here with us.
Rachel holds the clipboard and lets each person know when to start sampling. This helps avoid confusion and contamination. |
Hannah Glover sampling for DO. |
"Kit" Kallista Angeloff |
Kit stops the biological processes, preserving the chemistry of the sample. |
Saturday, May 31, 2014
Chuck and the Rad-van
Tweeted this ad because "Chuck and the Rad-Van" sounded like a band that could be playing in our destination: Seattle! |
Calibrating the light intensity before departing San Francisco, no protection needed at this point |
Remember that every group on board has a specific focus for their research, but they all collaborate, sharing data and using differing methods to compare data as well. For example, Brian Bill' s taxonomy of phytoplankton was supported by Julia Matheson's work with the flow cytometer. Andrew Schellenbach's FIRe work determined photosynthetic health, happy versus distressed cells; now, we look at Chuck Wingert's work in the Rad-Van, testing similarly for the cells photosynthetic health but with another method.
Photosynthetron with samples, notice the brighter intensity light at the bottom of the picture |
Photosynthetron without samples added; each of these cells are tuned for a specific light intensity. |
In order for the photosynthetron to measure carbon uptake, Chuck has to add a radioactive isotope of carbon, C-14. Every atom of carbon has 6 protons, and on the periodic table, carbon has an atomic mass of 12.011 amu. That means every atom of carbon has not only 6 protons but 6 neutrons as well, combining to make up the atomic mass. An isotope is when the neutrons differ from the stable atom of the element on the periodic table; therefore, C-14 is an isotope of carbon that has not 6 neutrons but 8.
6 protons plus 8 neutrons equals 14, C-14.
Fume hood takes up all gases from the reaction. |
After degassing, he adds a special solution and places the samples into another machine, called a liquid scintillation counter. This device detects radioactive isotope, C-14 without detecting the stable carbon (C-12). The machine provides a printout of "disintegrations per minute" or DPM. The higher the DPM, the more C-14 present in the sample which means that it has a higher photosynthetic capacity. Chuck then uses this number in a formula to find the carbon uptake or the "rate of photosynthesis."
Liquid Scintillation Counter detects C-14. |
Two photosynthetrons with samples for testing |
Different species of phytoplankton all have the same general shape of the curve, increasing photosynthetic rates with higher light intensity but leveling off at capacity, but this curve varies with its values. In other words, some species will be better adapted than others for the chemistry of the ocean and the changes of the future. Our work here is particularly interested in which phytoplankton cells are best adapted for the higher acidity and lower available nutrients as well as the effect of higher acidity on photosynthetic health.
Chuck is playing a huge role in this grand investigation. And, it continues long after this month of science at sea. In order for Chuck to truly see the photosynthetic abilities of each sample, he will need to input data for the formula to work. That data will come later as the group from University of Washington in conjunction with NOAA-PMEL (post upcoming) analyzes samples for DIC, dissolved inorganic carbon. It's all coordinated and connected--a beautiful picture of the ocean which we are studying.
Chuck Wingert and Chris Ikeda are both graduate students at RTC-SFSU under Dr. Cochlan. |
Quick story from the bridge...
One the best things about being at sea is meeting new people and hearing the stories they have from life experiences. Sailors, especially for research vessels like the Melville, have been all over the world to some of the most exotic places. I have been amazed by their adventures, and I can understand why a young man or woman finds themselves with saltwater in their blood. This salty life, however, is reserved for those with an adventurous spirit and few ties to the mainland. With a wife and four children at home, I could never do what they do which is why I have enjoyed learning about their jobs and hearing of their adventures.
When I was writing my post about the bridge, I met all of the officers and the captain. Heather Galiher is the 2nd mate onboard, and she told be me about some of her favorite places that she's had the chance to visit in her young career. Heather told me about Papua New Guinea, and how she climbed into the mouth of an active volcano with the rest of her crew. She said that
Take a look at what Heather sent me a few days later to support the magnitude of her story.
When I was writing my post about the bridge, I met all of the officers and the captain. Heather Galiher is the 2nd mate onboard, and she told be me about some of her favorite places that she's had the chance to visit in her young career. Heather told me about Papua New Guinea, and how she climbed into the mouth of an active volcano with the rest of her crew. She said that
the very next day that same volcano erupted!It's a pretty amazing story. But, it didn't make the impact that the pictures do.
Take a look at what Heather sent me a few days later to support the magnitude of her story.
Hiking up to the volcano |
Eruption the next day |
Heather Galiher unscathed, ready to board the R/V Melville. |
The reason that I could never be a full time sailor. left to right: Bryce, nearly 2, Olivia , 11, Jax, 3, Grady, 9 |
Thursday, May 29, 2014
Canadians, eh?
left to right: Dr. Mark Wells (U. Maine), Trey Joyner, Dr. Charlie Trick (Western U.), and Dr. Bill Cochlan (RTC-SFSU) |
Dr. Charlie Trick proving that fun and science do mix! This group has been incredible, and it stems from the leadership. |
Speaking with Dr. Trick, I realized that the food chain communities are size-based assemblages. In other words, large planktonic cells are food for larger zooplankton. The larger the phytoplankton, the shorter the food web, making it more efficient energetically. If phytoplankton cells, due to oceanic acidification or other variables, are smaller in size, then the food chain is longer, less efficient, meaning that more sun and nutrients will be necessary to provide the same amount of food for fish and other predators at the top of the food chain. Therefore, it is important to find out the cell size and their relative photosynthetic contribution to the natural community. And, like the iPhone, there's an app for that; in fact, there are multiple tools available that our marine scientists utilize aboard the R/V Melville.
Andrew Schellenbach, senior at Western University with Dr. Cochlan (RTC-SFSU) and Denis Costello and Kathryn Ferguson in the background. |
FIRe measures photosynthetic health from the ratio derived from maximums that saturate the cell. |
With every experiment, with every method, with every collaboration and with every conversation; together - they reveal a clearer picture. Like observing a diamond from different angles, using different instruments and different eyes, we not only have a better understanding but a greater appreciation for its beauty. Personally, that is what I'm observing here everyday at sea: Beautiful complexity revealed one test at a time.
Wednesday, May 28, 2014
Domoic Acid in the Phyto's
To say that I'm learning a lot would be a gross understatement. I'm drinking scientific knowledge from a firehose here. Every day and night, our conversations with the brightest and best scientists, experts in multiple disciplines from biology to chemistry to geology, supersede my limited knowledge of the marine world. Little by little, my understanding grows. How do you eat an elephant? One bite at a time.
Dr. Cochlan (SFSU-RTC) with former student, Brian Bill (NOAA-NWFSC), enriching seawater for a domoic acid experiment. |
One of the complimentary groups that is adding to the overarching goal of this sea-faring excursion is NOAA (National Oceanic and Atmospheric Administration). Through the leadership of Dr. Vera Trainer, who I will be writing a post about specifically later, NOAA's Northwest Fisheries Science Center has partnered with Dr. Cochlan and San Francisco University's Romberg Tiburon Center for years to collaborate and present the most honest picture of the ocean's "pulse." As teachers, we strive for interdisciplinary, even integrated, connections, and here at sea, this is best example that I have seen.
Kathryn Ferguson and Brian Bill hard at work. |
Brian Bill, the research associate for NOAA-NWFSC, has been working diligently day and night with the team and on his own, using equipment foreign to me, analyzing the assemblage and health of the phytoplankton communities throughout our sampling sites. His focus has been on methods that reveal the taxonomy of organisms, classifying the autophototrophs (photosynthesizing organisms) and analyzing the production of domoic acid by harmful species. The question that he and NOAA-NWFSC is trying to answer is: Do the toxin levels in phytoplankton increase with lower pH (higher acidity levels) of the ocean?
Brian has been working for NOAA since a biology undergrad at UW (pronounced "u-dub" by those that go there) in Seattle. From the area, Tacoma, Washington, Brian continued his work with NOAA as he began and completed his master's degree in marine biology at SFSU with Dr. Cochlan. After his master's degree, his title became oceanographer with NOAA, a fantastic career that few chose and fewer attain.
Kathryn Ferguson, Hollings Scholar, FSU/NOAA-NWFSC |
Kathryn Ferguson, 21, has been assisting Brian. She's an intern for the summer with NOAA and will be staying in Seattle to work. Kathryn, or "Sunshine," as she's known on board for her contagious smile, is a prestigious Hollings scholar from Florida State University. Originally from Maryland, she now makes Orlando her home (in the "Sunshine State").
Brian and Kathryn have been physically counting the "general abundance" of phytoplankton and identifying the types that are present with each water sample. They use a technique that concentrates the phytoplankton through a sieve allowing them to see as many as possible in a small volume of water. The most common genera in their samples so far have been: Chaetoceros and Pseudo-nitzschia. Both of these can be harmful species of diatoms. The former sometimes kills fish; and the latter produces the poison, domoic acid.
Remember that in the food web it's all connected. Phytoplankton produce their own food as autophototrophs, but they also produce lipids (think Omega-3) and toxins, such as domoic acid. These cannot be produced by any other source. As zooplankton, such as krill, eat the phytoplankton, they gain the nutrients as well as the lipids and toxins. Then the predators eat the zooplankton and all that is within them. So, just like the omega-3 lipids that are transferred to us when we eat fish, the domoic acid is transferred and accumulates in our bodies, causing sickness and even death. ASP, amnesic shellfish poisoning, is named because of the attack on the nervous system that causes temporary memory loss. It's a scary thought because the fish and shellfish are unaffected; it's us consumers that pay the price.
Pseudo-nitzschia |
Chaetoceros |
Dr. Vera Trainer, Brian Bill and Kathryn Ferguson are playing a huge role in the determination of toxic content in the communities that we are analyzing. Finding these two phytoplankton types, Chaetoceros and Pseudo-nitzschia, in the greatest abundance in our samples is not a good sign.
After finding these two harmful organisms in abundance, Brian goes to work analyzing the amount of domoic acid present in their cells. He uses a tool to detect toxic activity called ELISA (Enzyme Linked Immune Assay). He creates a standard curve with an expensive plate and machine that measures the optical density or color of the reaction on the special plate. Because this is a competition reaction, the more color, the less domoic acid. These plates are showing a lighter blue which means that the amount of domoic acid is high.
NOAA-Northwest Fisheries Science Center works hard daily to analyze the waters, to communicate with fisheries, and to create public awareness programs for toxins such as domoic acid as well as harmful algae blooms which both may be increased by the lowering pH of the ocean. But, we don't know that yet, which is why we are here.
These are the samples before the diluted hydrochloric acid (HCl) is added to each. |
Brian uses this special pipette to add 0.1mL to each sample. |
The plate goes into machine that reads the optical density of each sample. |
Analysis of the plate gives Brian the standard curve. |
Making a plate for domoic acid analysis |
Standard curve used to determine production of domoic acid. |
For quick analysis of the general abundance, a phytoplankton net tow is used to make collections. |
Subscribe to:
Posts (Atom)